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Localization and Delocalization in Periodic
One-Dimensional Dynamic Systems

G. Maidanik and J. Dickey
David Taylor Research Center

Annapolis, Maryland 21402, U.S.A.

Abstract

The impulse response function of ribbed membrane-like panels is derived. A model of
such a panel in which certain interactions among the ribs are removed is constructed. The
removed interactions are those that allow a rib to identify the dispositions of the other ribs. It is
argued that the impulse response function describing this model jilfails, by definition, to account
for the phenomena associated with pass and stop bands. The characteristics of this model are then
used to explain the phenomenon of localizations that occurs, at frequencies that lie within the pass
bands, when the periodicity of the ribs is disturbed. Similarly, this model is used to explain the
phenomenon of delocalizations that occurs, at frequencies that lie within the stop bands, when the
periodicity of the ribs is disturbed. The results of computer experiments that exhibit these types of
localizations and delocalizations are cited.
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Maidanik and Dickey

I Introduction

The response '(_,t) of a dynamic system may be related to the external drive 5 ( ,t)

that excites it, in terms of an impulse response function i(x I X', t It'); namely,

v(x,t) = f (x , t t')dx 'dr' 'e ,t) ,(la)

where t is the temporal variable and 2L is the vector variable in the spatial domain that spans

the dynamic system; e.g., if the spatial domain spans a surface then X = {x, y}

and dx ' = dx' dy '. Equation (la) is pure if the impulse response function is pure; the

impulse response function is pure if it is dependent solely on quantities and parameters of

the dynamic system and is completely independent of the response and the external drive.

Equation (la) may be advantageously and conveniently expressed in domains that are either

partial or full transforms of the {x t} - space. For example, employing Fourier

transformations on equation (la) one may formally state

V ( ),O = (I X', )0) ) CI,' d -O' Pe '') , (ib)

v (x, Q~)= g(x Ix', ~) ?)dx' d '2 Pe (x',.('2) , (ic)

V (k, 02) = fG(k Ik', L2 I W?2) dk' dW'2 Pe (k',jg'2 ) (1d)

where typically

v (x, C02) - (2i) 1  , t) dy dt exp [i (yky - cot)] (2a)

g (x ix', f 2 2) = (20) 2J ( A', t It') dy dt dy'dt'exp [i (yky-y'k 3 -ot + o' t')]

(2b)

2



Maidanik and Dickey

the wave vector variable j = {k, ky } is the Fourier conjugate of the spatial vector variable

X- = {x, Y}, the frequency variable co is the Fourier conjugate of the temporal variable t, and

W2 = {ky, c}. Situations arise in which the impulse response function is stationary in

some or all the dependent variables. The usefulness of the transform procedure in those

variables becomes immediately apparent. For example, if the impulse response function

9 (x 12&', t It') is stationary with respect to y and t, so that

(x-- t It') -->(2nt) "- ' (x I x', y - y', t - t') ,(a

then
g (X I' X%02 W 2) -- 9 (X X%',-2) 8 (k y -ky) 8 (o - co') ,(3b)

and equation (1c) and (ld) reduce to

v (x, 0 2) = Jg(x Ix', 0 2) dx' Pe (X',L'2) (4a)

V (k, 0 2) = (k I k', L02) dk' P. (k', '2 ) (4b)

respectively. Were the impulse response function to be stationary also with respect to x, so

that
g (xl x', W 2) -+ (2 )"1 gee (x - x', 02) (5a)

then
G (k I k', W2) G.. (k, Q2)8 (k-' , (5b)

and equation (ld) reduces to

V .. (k, %2) = G . (k, 02) Pe (k, Q2) , (6)

where the infinity (oo), as a subscript, indicates that the quantity is stationary in the "real

space" in which the dynamic system is described; e.g., in equation (6), with respect to

{x, y, t}. The simplicity of equation (6) is obvious. If the impulse response function that

3



Maidanik and Dickey

relates the response to the external drive is fully stationary then in the transformed space the

relationship becomes algebraic; e.g., equation (la) versus equation (6).1 In spite of this

simplicity there are several phenomena that can be accounted for by models of dynamic

systems that admit to fully stationary impulse response functions. In Reference 1, which

deals with the impulse response function of panels, it is shown that the transfer function

on, and the specular reflection and transmission coefficients of uniform panels can be

readily derived off equations such as equation (6) [1,2].2 In spite of the welcomed

simplicity, it is recognized that there are many phenomena of interest that cannot be

accounted for by models of dynamic systems that admit to fully stationary impulse

response functions. These phenomena can be accounted for only if specific deviations

and/or variations from uniformity are incorporated [3]. Nonuniformities result in impulse

response functions that are not stationary in some or all the dependent variables.

Nonuniformities of these kind may, for instance, explain and account for the complex

transfer functions on ribbed panels, and their nonspecular reflection and transmission

functions [1,2]. Of course, to explain and account for some of the phenomena, more and

more elaborate and compounded models may have to be constructed. The impulse

response functions describing such models may not only be nonstationary in more and

more variables, but their very functional forms may be horrendous. Often in such

situations one may effectively rely on statistical techniques and measures to reduce and

mollify the descriptions. It is, however, recognized that statistical procedures must be

applied with caution; the simplicity afforded may be blinding. This is particularly true

when the introduced nonuniformities are identical and periodic in some or all of the

dependent variables, or nearly identical and/or periodic [3]. [Nonuniformities that are

identical are clones.] It may then behoove one to construct models that may simulate, in

part, the statistical models so that one may be able to authenticate the behavior that the

statistical models suggest. In this paper the task set is rather modest. The nonuniformities

are introduced on bare, uniform, and membrane-like panels by the attachment of ribs.

4



Maidanik and Dickey

A rib introduces a one-dimensional spatially localized nonuniformity that lies along the

y-direction; see Figure 1. The response behavior of such ribbed panels is investigated to

illustrate the phenomena of localizations and delocalizations. The results of statistical

techniques and procedures applied to these models are also cited and discussed. The

purpose is not to comprehensively treat a large and significant area of the behavior of

dynamic systems, but rather, to discuss a point of view that may be new.

The class of pure impulse response functions that describe nonuniformities

introduced on a uniform membrane-like panel by a one-dimensional array of ribs may be

stated in the form

g(x 10x' = g**(x I x') - gs(x I x') =go*(x I X') [P - s (x 10x)]

gs(X x') = go*(x I x') s (x I x')

gs(x Ix') = ; go*(x I xn) Tr g. (xr I x') , (7)

where the suppression of the dependence of quantities and parameters on L2, ky, or CO, in

this and subsequent equations, is a matter of abbreviation; e.g., g (x I x',M2) = g (x ix') and

Tnr (Q2) = Tnr; g*. (x I x') is the line transfer admittance, on a uniform panel, from the line

drive position x' to the (line) observation position x, g. (x l x) = go. (x' Ix') is the line

admittance of the uniform panel, xn is the (line) position of the (n)th rib, and T., is the

coupling line impedance between the (r)th and the (n)th ribs; see Figure 1 and Reference 1.

In the absence of ribs, g, (xlx') vanishes, and the impulse response function appropriately

become stationary also with respect to x. One is reminded that the impulse response

function g (xlx') is already stationary with respect to y and t. It is, therefore, apparent that

gs (xlx') exclusively and completely accounts for the presence of the ribs. Thus, the

impulse response function of a ribbed panel can be expressed in terms of the superposition

of the impulse response functions of the uniform panel and that generated by the ribs. The

casting of equations (7) in the form of g, (xlx') or s (xlx') emphasizes that the influence of
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the ribs can be cast either in the form of terms or of factors. Although the two forms are

simply related, there are, nonetheless, situations in which one form may exhibit interpretive

advantages over the other. Indeed, the superposition argument just advanced is one

example of such situations. Another example relates to the aliasing in the wavenumber k

of the Fourier transform of s (xix'). When equation (7) is cast in the entire spectral space,

the {k, (Q2 I-space, it is found that S (klk') [the Fourier transform of s (xlx')] and not

G, (kik') [the Fourier transform of g. (xlx')] is aliased with respect to the harmonics of the

fundamental wavenumber, ic1, of the periodic separations between adjacent ribs; e.g., jic 1

is the (j)th harmonic. The aliasing of S (klk') in k is defined by S (k + jlk') = S (klk').

The aliasing phenomenon is discussed in some detail in Reference 4.

The quantities and parameters that appear in equation (7) may be more explicitly

stated:
Tn = [R/g9, (xn I xn)] CC ; =(Cnr) , (8)

B = (Bji) = (Sji + a- (xj Ixi) Ri (1 - S))

a.o(x Ix' ) = [g.(xlIx')/goo (xlIx)] ,(9)

Rn=Z g(xnIxn) [1 + 7_1 g(xnx)]X  , (10)

g.(xIx') =(2) 1 f G.(k)dkexp[-ik(x-x')] , (11)

where G(k) is the admittance of the uniform panel in the {k, 0-2 1-space, and Z1 is the

line impedance that the (n)th rib presents to the panel [1]. The purity of the impulse

response function g(x I x') of the ribbed panel, as stated in equation (7), is thus made

explicit.

Recently the authors derived an impulse response function for a ribbed panel that is

closely akin to that stated in equations (7) through (11) [I]. In this derivation the impulse

6



Maidanik and Dickey

response function of a panel can accommodate line moment impedances as well as

environmental loadings. The impulse response function of a fluid loaded plate responding

in flexure can thus also be described. Equations (7) through (11) may then be extended to

accommodate this more elaborate form of the impulse response function of the panel.

Further, one may quite readily express equations (7) through (11) in the abstract "state-

operators" form and in the notations adopted by Somette in a recent series of review papers

dealing with the "acoustic waves in random media" [5-7]. Indeed, these papers bear

directly and substantially on the present paper; e.g., the recognition that a marked

simplification may be obtained if the analysis is limited to one spatial dimensionality; the

analysis stated in equations (7) through (11) becomes indeed one-dimensional if the

wavenumber ky is fixed; e.g., fixed at zero. The one dimensionality is not only simpler but

it also accentuates the presence of the very phenomena that is of interest here [5-7]. For the

purposes of the paper, it is not essential to bring to bear either the greater elaborations

afforded by Reference 1; e.g., permitting the generation of moments and environmental

loadings, or the more elegant mantle for the formalism employed by Sornette; equations (7)

through (11) remain as are.

7
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II R- and NR- models

It may be useful to discuss and highlight a few of the notions and ideas that formulate

the phenomena of interest in this paper prior to indulging in details and computational

displays. However, for those who prefer to see computational displays as they proceed,

references to the appropriate figures are made. It is also to be noted that although the

formalism expressed and further developed in this paper is capable of handling an extensive

range of parametric values, in this and the succeeding sections, the statements, arguments,

and illustrations are largely directed toward the moderate range of values for the parameters

that describe the panel and the ribs. Therefore, for the most part the reflection coefficient of

a rib is near unity, the number of ribs is one or two scores, and the loss factor of the panel

is in the vicinity of 10-2. (Considerations of the more extreme parametric values will be

discussed under a separate cover [5, 6].) Again, hereafter the basic equations are those

expressed in equations (7) through (11). These equations describe the impulse response

function of the basic model comprising a ribbed membrane-like panel [1]. This model is

designated the R- model. It is advantageous and instructive to artificially contrive a model

in which "return" interactions among the ribs are excluded; only "nonreturn" interactions

are allowed. This model is designated NR- model. Nonreturn interactions are defined

here as those interactions that do not disclose to a rib information concerning the

dispositions of the others. That is, a wave that interacts with that specific rib is not allowed

to propagate to another rib and rn to that initial rib; see Figure 2. All other forms of

interactions among the ribs are included. 3 An examination of equations (7) through (11)

and Figure 2 reveals how the NR- model may be constructed. It is defined that x' lies

between the adjacent ribs at xR and xR+1; XR < X'< xR+1, and that x lies between the

adjacent ribs at xN and xN+I; XN < X < XN+, see Figure 1. Now, to ensure the exclusion of

return interactions and to retain all others, one requires that the elements of the coupling

8
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impedance matrix T in equations (7) through (11) be replaced by the corresponding

elements of the matrix TO which may be conveniently defined in the form

TO = (10n) ; 'I°nr = [R.g.(x, x,)] C°n

CO=( Or) ; CO=(BO) - 1

%,nr)

BO = (8ji + Bji [U 0-i) U (j-R) U (N+I-j) U (x-x')

+ U (i-j) U (i-N) U (R+1-i) U (x'-x)] (1-l8l) (12)

where U is the unit step function. [cf. equations (8) and (9).] For example, if x'< x the

matrix B 0 is of the form

........... ................ .....

RR

* 0

B00

.................. ........
N+1IN+1

: O

where F is the total number of ribs in the array, 0 designates a submatrix with zero

elements, and a "blank" submatrix is filled with the elements Bjj as prescribed in equation

(12). For x < x', B 0 is the mirror image of equations (13), the mirror is placed along the

diagonal of the matrix. The T O is of similar construction. In particular, the zero

submatrices occupy the same elemental positions. This property of T0 is essential in the

9
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structure of the NR- model. It is clear that the contrived NR- model renders the

interactions among the ribs rectified, e.g., T * * 0 but T° = 0 ; an artificial construction

indeed. The NR- model is useful in that the impulse response function that describes it is

just devoid of phenomena that feed on return interactions among the ribs. Again, return

interactions in the context of this paper refer to the information that a rib may acquire, by

interactions, concerning the dispositions of the other ribs. It is noted that a single mode of

propagation is assigned to the panel and that environmental loadings are neglected.

Therefore, such information can be communicated here solely by this single mode of

propagation.4 It is common knowledge that the pass and stop bands phenomena in ribbed

panels are associated with coherent interactions among the ribs [8, 9]. Such interactions

need be, by definition, return interactions. Therefore, these phenomena are expected to be

absent in the NR- model. [cf. Figures 3a and b versus Figures 4a and b, respectively.]

Moreover, the pass and stop bands phenomena are exhibited when the separations between

adjacent ribs are maintained equal so that the phases in the return interactions can be, in

certain frequency bands, coherently superposed to cause reinforcements or cancellations in

the response of the ribbed panel.5 Arguments of this kind can be further employed to

decipher the mechanism that causes the pass and stop bands to fade when, for example, the

positions of the ribs are deviated and/or varied so that the separations between adjacent ribs

are no longer equal [3]. [cf. Figure 3b versus Figure 5a.] When the strict periodicity of

the ribs is violated the phase information acquired by a rib of the dispositions of the others

may no longer be made coherent and the interactions when superposed may not cause either

substantial reinforcement or substantial cancellations. The phase mixing due to these

deviations and/or variations may, therefore, cause the pass and stop band to fade [3, 10].

Considerable phase mixing often leads to descriptions that are commensurate with

descriptions of models in which the information of phases is apriori suppressed or

removed. Indeed, phase mixing tends to render return interactions as ineffective as the

nonreturn interactions. One then expects that when the pass and stop bands fade in the

10
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manner just discussed, the R- model may yield an impulse response function that is more

commensurate with that yielded by the NR- model.6 [cf. Figure 5a versus Figure 4b.]

One may further surmise in this vein that when the positions of the ribs are statistically

distributed, the resulting impulse response function of the R- model will resemble that of

the NR- model.7 If the number of ribs is high enough and the damping is low enough,

this resemblence should emerge even in a single random selection; a single member of the

ensemble.5 [cf. Figure 5a versus Figure 5b.] Notwithstanding that the impulse response

functions of the NR- model, and of the statistical R- model are rather insensitive to

modest, and to further random disturbances in the positions of the ribs, respectively.

[cf. Figure 5b versus Figure 4b.] Finally, the influence of damping in the uniform panel,

on the relationships between the R- and the NR- models is briefly considered. Since

damping subdues interactions between ribs, especially those that are separated farther apart

from each other, and since return interactions are, by definition, of longer range than the

corresponding nonreturn interactions, it follows that increase in damping will subdue more

and more the pass and stop bands phenomena. [cf. Figure 2.] It is then expected that the

impulse response function of an R- model will approach more and more that of a

corresponding NR- model as damping is increased. [cf. Figures 3b and 3c versus

Figure 4b.] Thus, if one is interested in investigating or encouraging phenomena that are

associated with pass and stop bands, in addition to ensuring that the periodicity of the ribs

is strictly obeyed, that the ribs possess high enough reflection coefficients, and that their

number is high enough, light damping is essential [5-9].

Observation has it that if x' is chosen within the aperture of an array of periodic

nonuniformities, the magnitude of the impulse response function g (xIx', o)p) of the

dynamic system is macroscopically flat as a function of the normalized separation

[(x-x') / b] when the frequency co is chosen to be in a pass band, where 0c = op

[5-9]. [cf. Figure 6a.] The macroscopic unit scale exceeds the nominal separation b

between adjacent ribs. It is further observed that when random deviations are imposed on

11
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the periodicity, a change occurs in the response behavior. In particular, the response now
drops as [ x-x' I / b] is increased, and an apex is formed at [ (x-x') / b] = 0 [cf. Figure

6a versus Figure 6b.] This phenomenon is related to Anderson localizations [5-7, 11].

[cf. Figure 6c.] It is observed that if these deviations are significant enough, the behavior

of the resulting impulse response function becomes commensurate with the corresponding

impulse response function of the NR- model. [cf. Figure 6b.] In this sense Anderson

localizations may be viewed to arise because the random deviations imposed on the

periodicity, impose phase mixing of the kind discussed earlier. Moreover, it appears that

the magnitude of the impulse response function g (xIx', os) of a dynamic system that

possesses periodic nonuniformities, is macroscopically highly peaked as a function of the

normalized separation [ (x-x') / b] when the frequency co is chosen to be in a stop band,

where (o = o. The apex of the peak is at [ (x-x' ) / b ] = 0. [cf. Figure 6a.] It is further

seen that when random deviations are imposed on the periodicity, a change occurs in this

response behavior. In particular, the response now flattens out, with the peak still holding
at [ (x-x') / b] = 0. [cf. Figure 6a versus Figure 6b.] This phenomena may be dubbed

delocalization.8 [cf. Figure 6c.] It is observed that if these deviations are significant

enough, the behavior of the resulting impulse response function becomes, again,

commensurate with the corresponding impulse response function of the NR- model.

[cf. Figure 6b.] In this sense this delocalization can be viewed to arise because the random

deviations imposed on the periodicity, impose, again, phase mixing. Continuing in this

vein, it is noted that if one starts with a periodic NR- model as the foundation, the

introduction of the naturally occurring return interactions will cause delocalizations

(recovered localizations) at the frequencies op that lie in the pass bands and localizations

(recovered delocalizations) at the frequencies o, that lie in the stop bands. [cf. Figures 6a

and b.] In this format one may claim that an Anderson localization is the recovery of a

delocalization.

12
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MI Computer Experiments

This section provides a few examples designed to support some of the statements

and arguments presented in the preceding sections. For this purpose the uniform

membrane-like panel is defined in terms of the surface impedance

G., (k)= f{lO)m [y 2 - (k/kp)2]}'l;

y2 = [1 -(ky/kpy) 2] , (14)

where m is the mass per unit area and 14p - {kp, kpy} is the free wave vector on the panel.

The free wavenumber kp may, in this paper, assume one of two simple forms

!((C 2, (15a)

kp = kpo(l - iTlp) ; k2  = (Ol c 2  (15a)

where c and c Z are designated speeds, tip is the loss factor in the panel, and co0 is a

frequency scale factor. Equation (15a) describes a panel that is membrane-like; e.g., a plate

responding longitudinally. On the other hand, equation (15b) describes a membrane that

simulates a plate responding in flexure; in this description c may be equated to the critical

frequency of the plate with respect to c, where c may be considered the speed of sound in a

fluid of negligible density [12]. This condition on the fluid is necessary in order to satisfy

the assumption that there exist a negligible loading on the panel by the environment. Under

these assumptions one may readily derive

gee(x jx') = (kp/20)mY)exp(-ik4Y I x-x'l) (16)

a.,(xIx')=exp(-ikpYIx-x'l) ' (17)

and one is warned that Y needs to be picked so that its imaginary part is negative.

13
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[cf.equations (9) and (11).] Without significant loss in generality, ky is fixed at zero so

that Y is rendered unity and out of the way. For the immediate purposes of this paper the

line impedances of the ribs are also simply stated. The line impedance of typically the (n)th

rib is stated in the form

Zn=iwMn (18)

When Mn is real and positive, Z4 is a mass controlled line impedance and Mn is then the

mass per unit length.

In this paper a specific scheme for displaying the computations is followed. The

scheme is devised not -only to clarify the meaning of each figure but also to lump, as much

as possible, the explanation of the figures. In that vein, (x'/b) is fixed at (-4.7) and only

33 ribs are used. The line impedances of the ribs are assumed mass controlled. The

standard values of the parameters used in the computations are: (Mmb) = 0.3,

(bc/c) = 16, Trp = 5 x 10-3, and (ct/c) = 1.1; only changes, if any, in these standard

parameters will be highlighted. The frequency range covered is 0 < (w/wc) < 0.6. Each of

the quantities presented is plotted as a function of [ (x - x') /b] at a discrete normalized

frequency (cd/co,). With the exception of Figure 6, multitude of plots of a specific quantity

are simultaneously presented on a single figure; the plots are those of discrete, successive,

and ascending values of the normalized frequency (0c/a\). The interferences between such

plots are avoided by suppressing the interfering portions of the plots at the higher

frequencies.

The form of the magnitude of aoo(x I x') ; namely,

la..(xlx') I=lIgoo(x Ix')/goo(x x) l = lexp (-ikplx-x'I) l,

is obvious enough whether the surface impedance of the uniform panel is as stated in

equation (15a) or (15b), and need not be, therefore, specifically displayed. [cf.equations

(9) and (17).] For example, it is obvious that if the loss factor is increased, the drop off in
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Sa.(x I x') I with increase in [ x - x'! /b] will be correspondingly higher, and so forth.

Again, this statement holds whether the surface impedance of the panel is as stated in

equations (15a) or (15b). From equations (7) and (17) one may obtain

[g(xlx')/g..(xlx)]=a(xlx') =a..(xlx')[1-s(xlx')];

s (xIx") = exp [ikp (lx- x'l- Ix- xnl- Xr- x'l )] RCnr (19)

Since the factor [1 - s(x I x')] carries all the description relating to the ribs, and the factor

a., (x I x') is simple enough, it may be convenient and advantageous to deal, in subsequent

computational displays, with the former factor only. The representation of [1 - s (x I x')]

implies that the normalization is specified in terms of a line "force drive". One may,

however, specify the normalization in terms of a line "velocity drive". In the latter case, the

representation is carried out in terms of [1 - s (x I x')I [1 - s (x' I x')i- 1. The implication of

such a representation lies, however, outside the immediate scope of this paper. Indeed, in

this paper, the former representation is rule. In Figure 3a, the magnitude of[I -s (x I x')]

is plotted for a periodic R- model, using equation (15a) for the surface impedance of the

panel. The phenomena of pass and stop bands are clearly visible. In Figure 3b the

magnitude of [1 - s(x I x')] is plotted for a periodic R- model, using equation (I5b) for the

surface impedance of the panel. Figure 3b is similar to Figure 3a and any differences are

readily accountable. In particular, the phenomena of pass and stop bands are also clearly

visible in Figure 3b. In Figure 3c the conditions imposed on Figure 3b are maintained,

except that the loss factor is increased to ii,= 5 x 1&"2. The subduing of the pass and stop

bands by the increase in damping is clearly evidenced by comparing these two figures. In

Figures 4a and 4b the magnitude of [1 - s(x I x')] is plotted for a periodic NR- model,

using equations (15a) and (15b) for the surface impedances of the panel, respectively. 6

The phenomena of pass and stop bands are substantially and clearly mi-ing in these

figures. Staying with these gross displays, in Figure 5a the magnitude of [1 - s(x I x')] is
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plotted for a periooic R- model, using equation (15b) for the surface impedance of the

panel. In this figure, however, the periodic R- model is changed in that the periodic

positions of the ribs are "randomly" disturbed by not more than some 10% of the typical

separation b between adjacent ribs. The aperture of the array of ribs is kept, however,

unchanged. The fading of the pass and stop bands due to this disturbance in the periodicity

is clearly evidenced by comparing the figure with its counterpart, Figure 3b.9 Figure 5b

duplicates the conditions of Figure 5a except that the NR- model is substituted for the R-

model. In gross terms, the disturbed periodicity hardly effects the NR- model as can be

deduced by comparing Figure 5b with Figure 4b.9 One may already deduce from the

presented figures, the associations that exist between the fading of the pass and stop bands

and the manifestation of localizations and delocalizations. It may, however, be useful to

single out some of these features so that one can see the trees in the forest. For this

purpose Figure 6 is offered. In Figure 6, two groups of three individual plots of the

magnitude of [ I - s(x I x')] are depicted. In Figure 6a, one group is representing the

periodic R- model and the other, the periodic NR- model. In Figure 6b, one group is

representing the random R- model and the other, the periodic NR- model. In Figure 6c,

one group is representing the random R- model and the other, the periodic R- model.

The individual plots are for three distinct normalized frequencies; the top at (cS/o), the

middle at (ow~/oc),, and the bottom at (ot/o),), where co, lies in a stop band, (op lies in an

adjacent pass band, and wp, lies in between the pass band and the subsequent stop band.

[cf. Figures 3b and 4b.] Figure 6b duplicates the conditions of Figure 6a except that the

periodicity of the R- model is "randomly" disturbed by not more than some 10% of the

nominal separation b. [cf. Figures 5a and 4b.] The occurrence of the conventional

localizations and delocalizations is clearly exhibited in Figure 6c.

It is deemed that much of what was stated and argued in the preceding section has

withstood experimental verifications; the experiments being conducted on a computer.

There is much to be investigated in this and related areas of structural acoustics so that
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some of the notions and results expressed and derived herein may be put to practical use.

A little of this kind of use is immediately obvious; e.g., one should be careful of the

cavalier use of randomizing the spacing between the ribs to achieve localizations, hoping to

reduce the transmission in an intended frequency band. One may simultaneously cause

delocalization with accompanied increase in transmission at another froquency band which

may, even on balance, be detrimental; not to mention that were other modes of propagation

present, the expected benefit may not materialize even in the intended frequency band.

More will develop with further research.4' 9
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Remarks

1. The advantage lies in the manipulation and interpretation of the equation. However, if

the final quantity is required to be in real space a price of inverse transformation must be

paid.

2. The examples and computations provided and carried out in this paper are chiefly based

on material derived and discussed in Reference 1.

3. As Figure 2 explains, it is essential, in constructing the NR- model, to retain the

distinction between a.(xj I xi) and ao.(xi I xj), or equivalently, retain in a.(xj I xi) the

distinction between xi < xj and xi > xj. Since for a uniform panel, a.o(x I x') is stationary

and reciprocal in x; i.e., a.o(x I x') = a.o(x - x') = ao.(x' - x), the required distinction is

often lost early in the development of many formalisms. However, the formalism

developed in Reference 1 does retain this distinction. The retention is crucial in the

construction of the NR- model. Moreover, the removal of the return interactions is most
conveniently performed on the primitive matrix B , rather than on the compounded matrix

T. In this connection, one should not confuse the NR- model with the (N)th order model.

In the former modeling scheme, certain specific type of interactions; namely, the return

interactions, are omitted. In the latter modeling scheme: in the zeroth order model, the

nonuniformities are absent altogether, in the first order model, a nonuniformity is oblivious

to all other nonuniformities; in the second order model, a pair of adjacent nonuniformities is

oblivious to all other nonuniformities; and so on [4,5].

4. If additional modes of propagation and environmental loadings are incorporated, the

analysis becomes more and more compounded and requires more study. Since many

practical dynamic systems simultaneously support several modes of propagation and they

are usually loaded by the environment, this is indeed an area to be explored.

5. A regular model is one in which the nonuniformities are identical and equally spaced.

One may introduce deviations in the identities of the nonuniformities and/or in the equalities
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of the spacings; if these deviations are randomly selected, the model may be designated a

random model in the various deviations [3]. Models that are similarly randomized may

form an ensemble. Then a model that is designated a statistical model may be defined by

establishing various ensemble averagings [3]. In this paper for the most part the

monuniformities (the ribs) are assumed to be identical and, therefore, the spacings of the

ribs are central to the modeling. To emphasize this adaptation a model is designated

"periodic" when the ribs are equally spaced and is designated "random" when the equality

of the spacings are mildly, but randomly, disturbed. It is further noted in this connection

that the identities of the ribs -- the equalities of the line impedances of the ribs -- usually are

less significant in causing reinforcements or cancellations in the response of the panel.

Mild deviations and/or variations in the equalities of the line impedances of the ribs usually

do not effect significantly the phases in the return interactions. However, one can

introduce line impedances that are so design as to cause pronounced influence on these

phases. In this paper, however, such unusual designs are not pursued. It is merely

pointed out, in passing, that were the separations between adjacent ribs maintained equal,

the introduction of normal inequalities in the line impedances of the ribs, will not subdue

the phenomenon of wavenumber aliasing [7].

6. When the phases pertaining to a periodic R- model cannot be made to cause either

substantial reinforcements or substantial cancellations; i.e., at frequencies that lie between

adjacent pass and stop bands, one may expect that at these frequencies the impulse

response functions of a periodic R- model and a corresponding periodic NR- model will

exhibit similar behavior.

7. There are numerous statistical techniques and methodologies that can be used to derive

the statistical impulse response functions of dynamic systems that incorporate various

nonuniformities. There is no attempt in this paper to employ one or another of these

techniques and methodologies, and to define specific distributions for the deviations and/or

variations that one may attribute to the parameters that specify the dynamic system and/or
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its nonuniformities. At best, when a statistical example is called for, a simple member of a

simple ensemble is depicted rather than a typical member [3]. This procedure is sufficient

to satisfy the purpose and the scope assigned to this paper.

8. It is speculated that in parallel to Anderson localizations, there are to be found, in

physical systems that harbor periodicity, the phenomenon of delocalizations that are

exhibited when the periodicity is disturbed. In the physical system of ribbed panels here

considered, the phenomenon of delocalizations is discovered.

9. The appearances, in Figures 5 and 6, of some "remote" localizations and delocalizations

is a matter to be covered in a subsequent paper. Remote is a designation reserved to

describe a localization (or a delocalization) that occurs away from the location of the drive.

Moreover, the locations of such remote localizations and delocalizations may be

manipulated by assigning specific distributions to the positions and the line impedances of

the ribs. The apriori choice of such locations is, in principle, a form of passive control of

remote localized responses. Again, the cavalier use of this procedure need be carefully

examined in a practical situation in which a number of modes of propagation and

environmental loadings may be involved.

20



Maidanik and Dickey

References

[ 1] Maidanik, G. and Dickey, J., Acoustic behavior of ribbed panels. Journal of Sound

and Vibration 123 { 1988], 293.

[2] Strawderman, W. A., Turbulence induced plate vibrations and evaluation of finite-and

infinite-plate models. Journal of the Acoustical Society of America 4 [1969], 1294.

[3] Maidanik, G., Influence of deviations and variations in transducers on the filtering

actions of spectral filters. Journal of the Acoustical Society of America a[ 1974], 170.

[4] Maidanik, G. and Dickey, J., Aliasing in the response of ribbed panels. Submitted for

publication.

[5] Sornette, D., Acoustic waves in random media: I weak disorder regime. Acustica 67

[1989], 199.

[6] Sornette, D., Acoustic waves in random media: II coherent effects and strong disorder

regime. Acustica 67 [1989], 251.

[7] Sornette, D., Acoustic waves in random media: III experimental situations. Acustica 6

[1989], 15.

[8] Mead, D. J., A new method of analyzing wave propagation in periodic structures;

applications to periodic Timoshenko beams and stiffened plates. Journal of Sound and

Vibration 104 [1986], 9.

[9] Maidanik, G. and Dickey, J., Influence of interactions between ribs on structural and

acoustical properties of ribbed panels. Proceedings of the 107th ASME Technical

Conference, Anaheim, CA., USA, Dec. 1986.

[10] Maidanik, G., Fox, H., and Heck], M., Propagation and reflection of sound in

rarified gases. The Physics of Fluids 8 [1965], 259.

[11] He, S. and Maynard, J. D., Detailed measurements of inelastic scattering in Anderson

localization. Physical Review Letters 52 [1986], 317.

[12] Nayak, P. R., Line admittance of infinite isotropic fluid-loaded plate. Journal of the

Acoustical Society of America 4.7 [1970], 191.

21



Maidanik and Dickey

Figure Captions

Figure 1. A sketch of a ribbed panel showing the coordinate system and the orientations

and locations of the ribs xj's, the drive x', and the observation x.

Figure 2. Examples of nonreturn and corresponding return interactions between a pair of

ribs.

a. A nonreturn interaction: Bi = Bji; xi < xj.

b. A return interaction: B° = 0; xi < xj.

c. A return interaction: Bq = 0; xi > xj.

Figure 3. A composite of the magnitude of the normalized impulse response function

[1 - s (x I x')] of a periodic R- model of a ribbed panel, as a function of the normalized

distance [(x-x') /b] from the position x' of the line drive, for discrete, successive, and

ascending values of the normalized frequency (to'Wc).

a. A membrane-like panel; equation (15a).

b. A membrane simulating a plate responding in flexure; equation (15b).

c. As in Figure 3b except that damping is increased from the standard value of

71p = 5 x 10-3 to IP = 5 x 10-2.

Figure 4a. As in Figure 3a except that the periodic NR- model is substituted for the

periodic R- model.

Figure 4b. As in Figure 3b except that the periodic NR- model is substituted for the

standard R- model.

Figure 5. A composite of the magnitude of the normalized impulse response function

[1 - s (x I x')] of a ribbed panel described by equation (15b) as a function of the normalized

distance Ix-x' /b] from the position x' of the line drive, for discrete, successive, and

ascending values of the normalized frequency (co/qca). The separations between adjacent

ribs are disturbed from equality by, at most, some 10% of the nominal separation b.

a. R- model. [cf. Figure 3b.]

b. NR- model. [cf. Figure 4b.]
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Figure 6. A composite of the magnitude of the normalized impulse response function

[1 - s (x I x')] of a ribbed panel described by equation (15b) as a function of the normalized

distance [(x-x') /b] from the position x' of the line drive, for three discrete and descending

values of the normalized frequency (w./oc): (cos/oc), (cOp/oc), and (%ops/Cc), where (Os/Oc)

lies in a stop band, (coypoc) lies in the adjacent pass band, and (Cops/cOc) lies between the

pass band and the subsequent stop band.

a. Comparison between a periodic R- model (darker) and a periodic NR- model

(lighter).

b. Comparison between a random R- model (darker) and a periodic NR- model

(lighter). A recovered localization and a recovered delocalization are exhibited.

c. Comparison between a random R- model (darker) and a periodic R- model

(lighter). A conventional localization and a conventional delocalization are exhibited.
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